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nonlinear plants driven by nonminimum-phase command inputs and disturbances.
A synthesis philosophy was developed for solving this problem, but the
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RESEARCH IN FEEDBACK SYSTEM DESIGN

1. Introduction.

The primary purpose of this research is the development of a Quantitative
Theory of feedback Systems. Feedback is mandatory when there is uncertainty in
a system, but feedback theory has tended to be highly qualitative. Surfly
there should be a significant difference in the design of a feedback system
where the plant parameter uncertaintly is by a factor of say x% , and one
where it is 100x% ? However, there are very few design techniques in the
literature which reveal this. Our objective has been to develop such a
quantitative theory step by step, starting with the simplest structures. In
such a quantitative theory the problem statement includes the bounds of the
uncertain parameters and equally important, the tolerances on the system
performance. The design steps should be related to these numbers and the

final design which emerges should be tuned to the specifications.

2. Two New Complex Structures

Prior to this effort, the cascade structure of Fig. 1 was the most complex
one for which Quantitative Design was available. Under AFOSR - 2946 sponsor-
ship {31 (1977-78), it was extended to the structure consisting of two parallel
branches, shown in Fig. 2. During the current year (1978-79), it was extended
to the two structures shown in FIg. 3a,b. The first is denoted as the

Triangular strucutre, the second as the Parallel-Cascade strucuture [9].
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In each case there are given tolerances on the closed-loop system
response, and the range of the plant uncertainty. For example, the

following design is typical.

Numerical Example

Problem statement

(a) System structure: In Figure 3b, let m=4 , n.=n_=2 , n_=n,=3 ,

12 3 4

giving Figure 4a.

k 7 k11

12 Ss/A it 5o

(b) Plant: P

k : k21(1 + S/z)

2.5 S(S® +BS + C)

|
By ® —%l v o Am SR S e LY

(c) Plant Uncertainty: ku,k21 [4,40]

k12’k22 € [25,750]

k32,k42 € [5,40)

k33’k43 € [5,75)

A€ [1,2] s 2 € [1,2) , BE [0,1]

C € [0.04,1)

Specifications

(a) Bounds on unit step response C(t) - shown in Fig. 4b

< 2.3db.

(b) Disturbance Response: ,T%E
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Design Simulation The design details are given in Report 4 . Design

simulation results are shown in Figs. 5a-d, for 40 representative number of
plant parameter combinations, including the extremes. The specifications

(Fig. 4b) are satisfied in all cases.

Sensor Noise Effects at plant input X , are compared in Fig. 6. |X/N1|§(B)

is for the case of a single-loop design which satisfies the same
-

specifications. Note that scale B is used here. The effect is decreased

tremendously in a multiple-loop design |X/N1|2 (A) - using scale A . The

: II,III orB
other curves give the effect of the other sensors - with scale A~§1ways used. If

'2
12'1I11

applied if 833,,643 are used. Thus,one can decide whether this reduction is worth

i T e - LR s 3
G33 = G43 = 0 in Fig. 4a.thm1lX/N12|II is applicable, whereas the smaller |X/N

the extra cost of the two sensors and the construction of G G 1t

33 ” "43
is very useful that preliminary, highly accurate noise responses can be

obtained fairly quickly, without a detailed design. This is next treated.

Design Perspective

Design Perspective is a very useful aid in practical design. A
potentially multiple-loop plant has say n points including the plant
output, at thch sensors can be placed. Each sensor has its price which
would vary according to its quality. The more costly the sensor ,
the less the noise associated with it. Say there is large plant uncertainty.

Which sensors should be used? Should all n of them be used, or not at

each point, and of what quality?
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It is very desirable to get a good ball-park view of the tradé-offs

between the available loops, without having to try a number of detailed

designs. This is precisely what Design Perspective provides. One first
makes only a single-loop design for the problem, i.e. for the case only

the plant output sensor is used. Based on this, Design Perspective permits
the designer to very rapidly obtain very good approximations for the
multiple-loop design in which all or some of the other sensors are used.

This tells him quickly the relative importances of the various sensors,

which can be omitted etc. Comparisons of exact and perspective designs

for three examples are shown in Figs. 7a-c. In each case, the dashed lines
are the Design Perspective loop transmission results, and the solid lines are

the detailed design results. Clearly Design Perspective is extremely reliable.

3. Feedback systems with nonlinear plants and nonminimum-phase inputs

An exact synthesis technique was developed (I. Horowitz, Proc. IEEE Jan.
1976, pp. 123-130), for designing feedback systems with highly uncertain non-
linear plants, to satisfy precise performance specifications. Proof of its
validity requires knowledge of Banach spaces and Schauder's fixed point
theorem. But design excution is conceptually very straightforward and can
be done by frequency-response methods. The essence of the technique is

the replacement of the nonlinear plant set H by a linear time invariant

(2ti) plant set P, which is equivalent to H ' for the purpose of the
problem. Then one must solve the resulting 2ti problem, and its solution

is guaranteed to also solve the original nonlinear problem. 1
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Up to now the acceptable plant outputs had to be minimum-phase (mp),
in order to guarantee that all P € P are mp . (We are assuming that
the nonlinear plant is inherently mp , defined by its &ti equivalent
being mp for mp plant outputs). An inherently mp nonlinear plant can '
have a non-mp 2ti equivalent if the plant output is assumed non-mp. If
so, our design procedure may break down, because it may not be possible

to solve the resulting equivalent &ti design problem.

We have been able in practice to solve such problems, but had no
rigorous theoretical justification. But now we believe to have one. It
involves equivalent &ti plants which have both poles and zeros in the right
half-plane (rhp). Normally, the feedback capabilities around such plants are
severely limited [7]1 , if the closed-loop system is to be stable. However,
in our approach, large feedback is used anyhow, leading to a characteristic
polynomial with rhp zeros. A Ati system would then be unstable. However,

the nonlinear system is stable. The mathematical details are being currently

developed.
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Fig. 1 A canonical feedback structure for a cascade plant.




Fig. 2 A canonical feedback structure for plant of two parallel branches, one cascaded
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Fig. 3b A canonical feedback structure for the general parallel-cascade plant
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Fig. 4a.Numerical example

Fig. 4b Step response tolerances
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